Neutrino mass models at colliders in the post-ESU 2020 Snowmass 2021 era

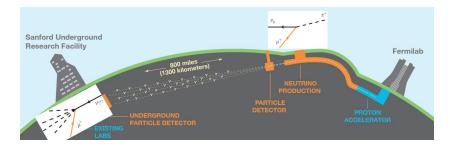
Rare Process Frontier Townhall Meeting

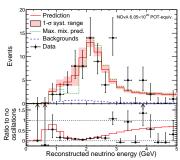
Richard Ruiz

Center for Cosmology, Particle Physics, and Phenomenology (CP3)

Universite Catholique de Louvain

October 2, 2020



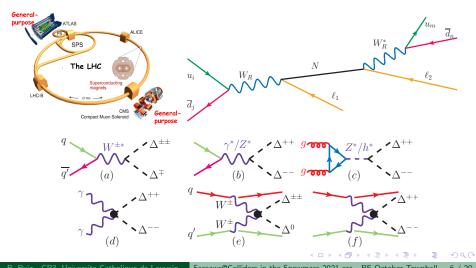


What is the physics / motivation for your LOI?

the big physics picture

In neutrino fixed-target expts, ν_{μ} beams from collimated π^{\pm} , then studied at near and far detectors

Deficit/disappearance of expected ν_{μ} (+apperance of $\nu_e/\nu_{\tau})$ interpreted as $\nu_{\ell_1} \rightarrow \nu_{\rm mass} \rightarrow \nu_{\ell_2}$ transitions/oscillations [E.g. NO ν A ν_{μ} disapp., 1701.05891]



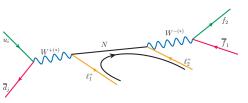
the medium picture

models that explain tiny neutrino masses (Seesaw models) are testable

models that explain tiny neutrino masses (Seesaw models) are testable, especially at colliders

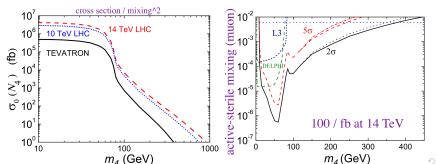
for a review, see w/ Y. Cai, T. Li, and T. Han [1711.02180] as well as w/ Pascoli, et al [1812.08750]

the little picture

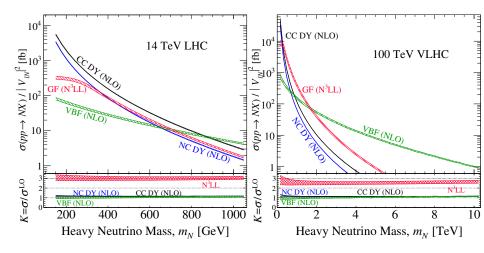

(our part!)

Snowmass 2013 inspired an effort to systematically modernize the collider phenomenology for Seesaw models

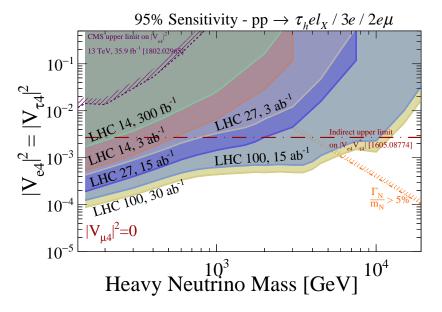
for example


Historically, searches for N with $m_N > M_W$ relied on $(q\overline{q})$ annihilation

Keung & Senjanovic (PRL'83)


At the LHC, a canonical signature for N: $pp \rightarrow \ell_i^{\pm} \ell_i^{\pm} + nj + \text{ no MET}$

based on seminal works by K&S, del Aguila & Aguilar-Saavedra [0808.2468], and Atre, et al [0901.3589]



a lot has happened since 2013

Plotted: Normalized production rate $(\sigma/|V|^2)$ vs heavy N mass (m_N)

For $m_N = 10$ TeV and $|V_{\ell N}|^2 \sim 10^{-3}$, then at 100 TeV, one has $\mathcal{O}(30)$ VBF events after 30 ab⁻¹! If BR× ε × \mathcal{A} ~ $\frac{1}{3}$, then $\sqrt{N_{Obs.}}$ > 3σ

Major improvements $\implies > 10 \times$ better sensitivity to LNV + cLFV

Only a few results. See the big paper for various flavor, Dirac vs Majorana, and \sqrt{s} permutations [1812.08750].

"What will you work on between now and Snowmass, and what is your schedule for developing a contributed paper?"

continue extending outlook for other models

continue extending outlook for other models

Type I Seesaw - pseudo-Dirac and Majorana N √√

```
E.g. w/ Degrand, et al [1602.06957]; w/ Pascoli, et al [1812.08750]
```

• Type II Seesaw - exotically charged Δ^{\pm} , $\Delta^{\pm\pm}$

```
E.g. w/ Fuks and Nemevšek [1912.08975]
```

• Type III Seesaw - exotically charged T^{\pm} , T^{0} (need to update)

```
E.g. [1509.05416]
```

- Left-Right Symmetry W_R^{\pm} , Z_R + many other things \checkmark
- E.g. w/ Mitra, Scott, Spannowsky, Mattelaer [1607.03504; 1610.08985] Nemevšek, et al [1801.05813]
- B-L Symmetry $N+Z_{B-L}$ (need to updated for 100 TeV)
- All of the above with τ_h final states (long term goal)

```
E.g. w/ Pascoli, et al [1805.09335; 1812.08750]
```

Priority: over next six months, run the numbers for EFTs and W'/Z'

"What common data sets, joint efforts, etc. do you need?"

our simulation tools are public and folks are welcome to help!

- Ongoing efforts within FeynRules and MadGraph MC collaborations
- Mainstream tools with widespread use and technical support

Available UFOs¹ for neutrino mass models:

- Type I Seesaw feynrules.irmp.ucl.ac.be/wiki/HeavyN (Request/use by ATLAS+CMS)
- Type II Seesaw feynrules.irmp.ucl.ac.be/wiki/TypellSeesaw (Request/use ATLAS)
- Left-Right Symmetry feynrules.irmp.ucl.ac.be/wiki/EffLRSM (Request/use ATLAS)
- Generic W'/Z' feynrules.irmp.ucl.ac.be/wiki/WZPrimeAtNLO
- + others
- Cannot find your favorite Seesaw model UFO? We should collaborate!

¹ UFOs encode Fevnman rules for mainstream event generators, e.g. MadGraph, to:simulate BSM (not just=colliders)

"What would you like to come out of the Snowmass process?"

given the latest tools, newest analysis techniques, and a better understanding of current ones, what new information can the HL-LHC and successors provide about the origin of tiny m_{ν} ?

Thank you.